Purpose: Previous studies have demonstrated the efficacy of vasoactive intestinal peptide (VIP) treatment in regulating inflammation following bacterial keratitis induced by the P. aeruginosa strain 19660. However, in the current study we assessed whether disease outcome is specific to 19660 or if VIP treatment is effective against multiple P. aeruginosa strains.
Methods: B6 mice received daily IP injections of VIP from -1 through 5 days post injection (p.i.). Control mice were similarly injected with PBS. Corneal infection was induced using PA 19660, PAO1 or KEI 1025. Disease response was documented and bacterial plate counts and myeloperoxidase assays were performed. Expression of select inflammatory mediators as well as enzymes associated with lipid mediator production was assessed after VIP treatment. KEI 1025 was characterized by cytotoxicity and invasion assays and then confirmed for ExoS/ExoU expression.
Results: VIP treatment converted the susceptible response to resistant for the three P. aeruginosa strains tested. Disease response was significantly reduced with no corneal perforation. Anti-inflammatory mediators were enhanced after VIP treatment, while pro-inflammatory molecules were reduced compared to controls. Furthermore, VIP reduced inflammatory cell persistence in the cornea after infection with each of the P. aeruginosa strains.
Conclusions: VIP treatment is effective at ameliorating disease pathogenesis for multiple P. aeruginosa strains, both cytotoxic and invasive. This study is also the first to indicate a possible role for VIP regarding lipid mediator expression in the eye. In addition, the clinical isolate, KEI 1025, was characterized as an invasive strain. Overall, this study strengthens the preclinical development of VIP as a therapeutic agent for ocular infectious disease.