β-Klotho (β-Kl), a transmembrane protein expressed in the liver, pancreas, adipose tissues, and brain, is essential for feedback suppression of hepatic bile acid synthesis. Because bile acid is a key regulator of lipid and energy metabolism, we hypothesized potential and tissue-specific roles of β-Kl in regulating plasma lipid levels and body weight. By crossing β-kl(-/-) mice with newly developed hepatocyte-specific β-kl transgenic (Tg) mice, we generated mice expressing β-kl solely in hepatocytes (β-kl(-/-)/Tg). Gene expression, metabolomic, and in vivo flux analyses consistently revealed that plasma level of cholesterol, which is over-excreted into feces as bile acids in β-kl(-/-), is maintained in β-kl(-/-) mice by enhanced de novo cholesterogenesis. No compensatory increase in lipogenesis was observed, despite markedly decreased plasma triglyceride. Along with enhanced bile acid synthesis, these lipid dysregulations in β-kl(-/-) were completely reversed in β-kl(-/-)/Tg mice. In contrast, reduced body weight and resistance to diet-induced obesity in β-kl(-/-) mice were not reversed by hepatocyte-specific restoration of β-Kl expression. We conclude that β-Kl in hepatocytes is necessary and sufficient for lipid homeostasis, whereas nonhepatic β-Kl regulates energy metabolism. We further demonstrate that in a condition with excessive cholesterol disposal, a robust compensatory mechanism maintains cholesterol levels but not triglyceride levels in mice.
Keywords: bile acid; cholesterol; fibroblast growth factor; metabolomics; triglyceride.
© FASEB.