In mouse models of infection with the gastrointestinal parasite Trichuris muris, appropriate dendritic-cell (DC) Ag sampling, migration, and presentation to T cells are necessary to mount a protective Th2-polarized adaptive immune response, which is needed to clear infection. SH2-containing inositol 5'-phosphatase 1 (SHIP-1) has been shown to be an important regulator of DC function in vitro through the negative regulation of the phosphoinositide 3-kinase (PI3K) pathway, but its role in vivo is relatively unexplored. In the current work, mice with a specific deletion of SHIP-1 in DCs (Ship1(ΔDC) ) were infected with the parasite T. muris. Ship1(ΔDC) mice were susceptible to infection due to ineffective priming of Th2-polarized responses. This is likely due to an increased production of interleukin (IL) 12p40 by SHIP-1-deficient DCs, as in vivo antibody blockade of IL-12p40 was able to facilitate the clearing of infection in Ship1(ΔDC) mice. Our results describe a critical role for SHIP-1 in regulating the ability of DCs to efficiently prime Th2-type responses.
Keywords: Dendritic cell ⋅ PI3K ⋅ SHIP-1 ⋅ Th2 ⋅ Trichuris muris.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.