Microglia/macrophages play a crucial role in inflammation after spinal cord injury (SCI). Although extensive studies have been performed on the mechanisms of microglia/macrophage activation and recruitment, how microglia/macrophages are eliminated remains unclear. In the present study, we observed a high-level expression of mixed lineage kinase domain-like protein (MLKL), a key molecule in the execution of necroptosis, in microglia/macrophages after SCI in mice. In vivo PI-labeling and Necrostatin-1 treatment confirmed the necroptosis of microglia/macrophages. Interestingly, our electronic microscopic (EM) study revealed that MLKL localized not only at the membrane but also on the endoplasmic reticulum (ER) of necroptotic microglia/macrophages. Furthermore, receptor-interacting protein 3 (RIP3), another necrosome component, was also found on the ER of necroptotic microglia/macrophages. And Glucose-regulated protein 78 (GRP78), an ER stress sensor, was up-regulated in MLKL-positive microglia/macrophages after SCI, suggesting a possible link between necroptosis and ER stress. In vitro, oxygen-glucose deprivation (OGD) stress induced ER stress and necroptosis in microglia. Inhibiting ER stress by 4-phenylbutyrate (4-PBA) significantly blocked the OGD-induced necroptosis of microglia. In the end, our data showed that, GRP78 and phosphorylated MLKL were co-expressed by the microglia/macrophages in the injured human spinal cord. Taken together, these results suggested that microglia/macrophages undergo an ER-stress involved necroptosis after SCI, implying that ER stress and necroptosis could be manipulated for modulating inflammation post-SCI.
Keywords: ER stress; microglia/macrophage; necroptosis; spinal cord injury.
Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.