Purpose: To evaluate the efficacy of nucleoside reverse transcriptase inhibitors (NRTIs) in the laser-induced mouse model of choroidal neovascularization (CNV).
Methods: We evaluated the NRTIs lamivudine (3TC), zidovudine (AZT), and abacavir (ABC) and the P2X7 antagonist A438079. Choroidal neovascularization was induced by laser injury in C57BL/6J wild-type, Nlrp3-/-, and P2rx7-/- mice, and CNV volume was measured after 7 days by confocal microscopy. Drugs were administered by intravitreous injection immediately after the laser injury. Vascular endothelial growth factor-A in RPE-choroid lysates was measured 3 days after laser injury by ELISA. HEK293 cells expressing human and mouse P2X7 were exposed to the selective P2X7 receptor agonist 2', 3'-(benzoyl-4-benzoyl)-ATP (Bz-ATP) with or without 3TC, and VEGF-A levels in media were measured by ELISA.
Results: Intravitreous injection of 3TC, AZT, and ABC significantly suppressed laser-induced CNV in C57BL/6J wild-type and Nlrp3-/- mice (P < 0.05) but not in P2rx7-/- mice. Intravitreous injection of A438079 also suppressed the laser-induced CNV (P < 0.05). The NRTIs 3TC, AZT, and ABC blocked VEGF-A levels in the RPE/choroid after laser injury in wild-type (P < 0.05) but not P2rx7-/- mice. Moreover, there was no additive effect of 3TC on CNV inhibition when coadministered with a neutralizing VEGF-A antibody. Stimulation of human and mouse P2X7-expressing HEK293 cells with Bz-ATP increased VEGF secretion (P < 0.001), which was abrogated by 3TC (P < 0.001). Stimulation of primary human RPE cells with Bz-ATP increased VEGFA and IL6 mRNA levels, which were abrogated by 3TC.
Conclusions: Multiple clinically relevant NRTIs suppressed laser-induced CNV and downregulated VEGF-A, via P2X7.