miR-1343 attenuates pathways of fibrosis by targeting the TGF-β receptors

Biochem J. 2016 Feb 1;473(3):245-56. doi: 10.1042/BJ20150821. Epub 2015 Nov 5.

Abstract

Irreversible respiratory obstruction resulting from progressive airway damage, inflammation and fibrosis is a feature of several chronic respiratory diseases, including cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). The cytokine transforming growth factor β (TGF-β) has a pivotal role in promoting lung fibrosis and is implicated in respiratory disease severity. In the present study, we show that a previously uncharacterized miRNA, miR-1343, reduces the expression of both TGF-β receptor 1 and 2 by directly targeting their 3'-UTRs. After TGF-β exposure, elevated intracellular miR-1343 significantly decreases levels of activated TGF-β effector molecules, pSMAD2 (phosphorylated SMAD2) and pSMAD3 (phosphorylated SMAD3), when compared with a non-targeting control miRNA. As a result, the abundance of fibrotic markers is reduced, cell migration into a scratch wound impaired and epithelial-to-mesenchymal transition (EMT) repressed. Mature miR-1343 is readily detected in human neutrophils and HL-60 cells and is activated in response to stress in A549 lung epithelial cells. miR-1343 may have direct therapeutic applications in fibrotic lung disease.

Keywords: fibrosis; lung; microRNA; transforming growth factor β.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • 3' Untranslated Regions
  • Epithelial-Mesenchymal Transition
  • Humans
  • Lung / metabolism
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Pulmonary Fibrosis / genetics
  • Pulmonary Fibrosis / metabolism*
  • Pulmonary Fibrosis / physiopathology
  • Receptor, Transforming Growth Factor-beta Type I
  • Receptor, Transforming Growth Factor-beta Type II
  • Receptors, Transforming Growth Factor beta / genetics
  • Receptors, Transforming Growth Factor beta / metabolism*
  • Signal Transduction
  • Smad2 Protein / genetics
  • Smad2 Protein / metabolism
  • Smad3 Protein / genetics
  • Smad3 Protein / metabolism
  • Transforming Growth Factor beta1 / metabolism*

Substances

  • 3' Untranslated Regions
  • MIRN-1343 microRNA, human
  • MicroRNAs
  • Receptors, Transforming Growth Factor beta
  • SMAD2 protein, human
  • SMAD3 protein, human
  • Smad2 Protein
  • Smad3 Protein
  • Transforming Growth Factor beta1
  • Protein Serine-Threonine Kinases
  • Receptor, Transforming Growth Factor-beta Type I
  • Receptor, Transforming Growth Factor-beta Type II