Background: To identify PTEN isoform and explore its potential role in tumor suppression.
Methods: Western blotting, over-expression, shRNA mediated knocking-down, and bioinformatic analysis were used to identify PTEN isoform and test its effect on PI3K-Akt signaling pathway. Cell proliferation, apoptosis, and migration assays were used to test PTEN isoform's biological activities.
Results: The PTEN isoform is about 15 kDa bigger than PTEN and its expression is dependent on PTEN status. Immunoprecipitation for PTEN isoform followed by screening with antibodies against ISG15, SUMO1/2/3, Ubiquitin, and Nedd8 showed the identified PTEN isoform is not a general proteinaceous post-translational modification. In addition, overexpression of PTEN cDNA in cells did not generate PTEN isoform whereas knocking-down of PTEN reduced the protein levels of both PTEN and PTEN isoform in a proportional manner. Analysis of PTEN DNA sequence disclosed an alternative translational starting code (CTG) upstream of canonical PTEN coding sequence. Expression of cloned PTEN isoform generated a protein with a size about 15 kDa bigger than PTEN and suppressed PI3K-Akt signaling pathway in cells. Overexpression of PTEN isoform also led to decrease in cell growth and enhanced serum starvation-and UV irradiation-induced apoptosis through activation of Caspase 3. Finally, expression of PTEN isoform inhibited cell migration in scratch assay.
Conclusions: PTEN isoform has PTEN-like activity and might be a new tumor suppressor.
Keywords: PI3K-Akt; PTEN; PTEN isoform; apoptosis; cell growth; cell migration; tumor suppressor.