Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults

Neuroimage. 2016 May 1:131:142-54. doi: 10.1016/j.neuroimage.2015.10.084. Epub 2015 Nov 3.

Abstract

Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3-month aerobic exercise study, forty healthy older humans (60 to 77years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n=21) or to a control group (indoor progressive-muscle relaxation/stretching, n=19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampus-dependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here.

Keywords: Aging; Exercise; Hippocampus; Neurotrophic factors; Vascular plasticity.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Aged
  • Aging / physiology
  • Blood Flow Velocity / physiology
  • Brain-Derived Neurotrophic Factor / blood*
  • Cerebrovascular Circulation / physiology*
  • Exercise / physiology*
  • Female
  • Hippocampus / physiology*
  • Humans
  • Insulin-Like Growth Factor I / metabolism*
  • Male
  • Memory / physiology*
  • Middle Aged
  • Neuronal Plasticity / physiology
  • Organ Size / physiology
  • Physical Conditioning, Human / methods
  • Physical Fitness / physiology
  • Vascular Endothelial Growth Factor A / blood*

Substances

  • Brain-Derived Neurotrophic Factor
  • Vascular Endothelial Growth Factor A
  • Insulin-Like Growth Factor I
  • BDNF protein, human