Background: In any spatial research, the use of accurate location data is critical to the reliability of the results. Unfortunately, however, many of the administrative data sets used in injury research do not include the location at which the injury takes place. The aim of this paper is to examine the error associated with using place of residence as opposed to place of injury when identifying injury hotspots and hospital access.
Methods: Traumatic Brian Injury (TBI) data from the BC Trauma Registry (BCTR) was used to identify all TBI patients admitted to BC hospitals between January 2000 and March 2013. In order to estimate how locational error impacts the identification of injury hotspots, the data was aggregated to the level of dissemination area (DA) and census tract (CT) and a linear regression was performed using place of residence as a predictor for place of injury. In order to assess the impact of locational error in studies examining hospital access, an analysis of the driving time between place of injury and place of residence and the difference in driving time between place of residence and the treatment hospital, and place of injury and the same hospital was conducted.
Results: The driving time analysis indicated that 73.3 % of the injuries occurred within 5 min of place of residence, 11.2 % between five and ten minutes and 15.5 % over 20 min. Misclassification error occurs at both the DA and CT level. The residual map of the DA clearly shows more detailed misclassification. As expected, the driving time between place of residence and place of injury and the difference between these same two locations and the treatment hospital share a positive relationship. In fact, the larger the distance was between the two locations, the larger the error was when estimating access to hospital.
Conclusions: Our results highlight the need for more systematic recording of place of injury as this will allow researchers to more accurately pinpoint where injuries occur. It will also allow researchers to identify the causes of these injuries and to determine how these injuries might be prevented.
Keywords: Access to trauma systems; Geographic information systems; Injury hotspot; Locational error.