Rationale: The mechanism involved in AD is complex, which has prompted to develop compounds that could simultaneously interact with several potential targets. Here, we report a new synthesized compound SCR-1693 which is designed to target both AChE and calcium channels that are potential for AD therapy.
Objectives: We investigated the effects of SCR-1693 on AChE and calcium channels, the effects of neuroprotection and anti-amnesia in icv-Aβ25-35-injected mice, and the potential mechanisms.
Methods: AChE activity assay, intracellular Ca(2+) content and calcium currents measurement, and Aβ25-35-induced cellular death determine were performed for validation of designed targets and neuroprotection of SCR-1693. Mice were orally administrated with SCR-1693 once daily after an Aβ25-35 injection. The Morris water maze and Y-maze test, and hippocampal protein detection were conducted on days 5-10, day 11, and day 8. The pyramidal neuron number, hippocampal AChE activity, and synaptic transmission were measured on day 12.
Results: SCR-1693 acted as a selective, reversible, and noncompetitive inhibitor of AChE, and a nonselective voltage-gated calcium channel blocker. SCR-1693 also inhibited the increase of AChE activity in the mouse hippocampus. SCR-1693 was more effective than donepezil and memantine in preventing Aβ25-35-induced long-term and short-term memory impairment, maintaining the basal transmission of Schaffer collateral-CA1 synapses, and sustaining LTP in mouse hippocampus. SCR-1693 attenuated Aβ25-35-induced death of SH-SY5Y cell and the loss of hippocampal pyramidal neurons, and regulated Aβ25-35-induced signal cascade in neurons.
Conclusions: All these findings indicated that SCR-1693, as a double-target-direction agent, is a considerable candidate for AD therapy.
Keywords: AChE inhibitor; Learning and memory; Neuroprotection; SCR-1693; VGCCs blocker; β-Amyloid.