Proteogenomic re-annotation and mRNA splicing information can lead to the discovery of various protein forms for eukaryotic model organisms like rat. However, detection of novel proteoforms using mass spectrometry proteomics data remains a formidable challenge. We developed EuGenoSuite, an open source multiple algorithmic proteomic search tool and utilized it in our in-house integrated transcriptomic-proteomic pipeline to facilitate automated proteogenomic analysis. Using four proteogenomic pipelines (integrated transcriptomic-proteomic, Peppy, Enosi, and ProteoAnnotator) on publicly available RNA-sequence and MS proteomics data, we discovered 363 novel peptides in rat brain microglia representing novel proteoforms for 249 gene loci in the rat genome. These novel peptides aided in the discovery of novel exons, translation of annotated untranslated regions, pseudogenes, and splice variants for various loci; many of which have known disease associations, including neurological disorders like schizophrenia, amyotrophic lateral sclerosis, etc. Novel isoforms were also discovered for genes implicated in cardiovascular diseases and breast cancer for which rats are considered model organisms. Our integrative multi-omics data analysis not only enables the discovery of new proteoforms but also generates an improved reference for human disease studies in the rat model.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.