Visual Analysis of Multi-Run Spatio-Temporal Simulations Using Isocontour Similarity for Projected Views

IEEE Trans Vis Comput Graph. 2016 Aug;22(8):2037-50. doi: 10.1109/TVCG.2015.2498554. Epub 2015 Nov 6.

Abstract

Multi-run simulations are widely used to investigate how simulated processes evolve depending on varying initial conditions. Frequently, such simulations model the change of spatial phenomena over time. Isocontours have proven to be effective for the visual representation and analysis of 2D and 3D spatial scalar fields. We propose a novel visualization approach for multi-run simulation data based on isocontours. By introducing a distance function for isocontours, we generate a distance matrix used for a multidimensional scaling projection. Multiple simulation runs are represented by polylines in the projected view displaying change over time. We propose a fast calculation of isocontour differences based on a quasi-Monte Carlo approach. For interactive visual analysis, we support filtering and selection mechanisms on the multi-run plot and on linked views to physical space visualizations. Our approach can be effectively used for the visual representation of ensembles, for pattern and outlier detection, for the investigation of the influence of simulation parameters, and for a detailed analysis of the features detected. The proposed method is applicable to data of any spatial dimensionality and any spatial representation (gridded or unstructured). We validate our approach by performing a user study on synthetic data and applying it to different types of multi-run spatio-temporal simulation data.