To derive and validate a practical patient-specific dose protocol to obtain an image quality, expressed by the image noise, independent of patients' size and a better radiation dose justification in coronary CT angiography (CCTA) using prospective ECG triggering. 43 patients underwent clinically indicated CCTA. The image noise, defined as the standard deviation of pixel attenuation values in a homogeneous region in the liver, was determined in all scans. Subsequently, this noise was normalized to the radiation exposure. Next, three patient-specific parameters, body weight, body mass index and mass per length (MPL), were tested for the best correlation with normalized image noise. From these data, a new dose protocol to provide a less variable image noise was derived and subsequently validated in 84 new patients. The normalized image noise increased for heavier patients for all patients' specific parameters (p < 0.001). MPL correlated best with the normalized image noise and was selected for dose protocol optimization. This new protocol resulted in image noise levels independent of patients' MPL (p = 0.28). A practical method to obtain CCTA images with noise levels independent of patients' MPL was derived and validated. It results in a less variable image quality and better radiation exposure justification and can also be used for CT scanners from other vendors.
Keywords: Body size; Cardiac angiography; Cardiac imaging techniques; Computed X-ray tomography; Coronary artery disease; Radiation dosage.