Symmetry-respecting real-space renormalization for the quantum Ashkin-Teller model

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042163. doi: 10.1103/PhysRevE.92.042163. Epub 2015 Oct 29.

Abstract

We use a simple real-space renormalization-group approach to investigate the critical behavior of the quantum Ashkin-Teller model, a one-dimensional quantum spin chain possessing a line of criticality along which critical exponents vary continuously. This approach, which is based on exploiting the on-site symmetry of the model, has been shown to be surprisingly accurate for predicting some aspects of the critical behavior of the quantum transverse-field Ising model. Our investigation explores this approach in more generality, in a model in which the critical behavior has a richer structure but which reduces to the simpler Ising case at a special point. We demonstrate that the correlation length critical exponent as predicted from this real-space renormalization-group approach is in broad agreement with the corresponding results from conformal field theory along the line of criticality. Near the Ising special point, the error in the estimated critical exponent from this simple method is comparable to that of numerically intensive simulations based on much more sophisticated methods, although the accuracy decreases away from the decoupled Ising model point.