Photodissociation dynamics of HOD via the B̃ ((1)A1) electronic state

J Chem Phys. 2015 Nov 14;143(18):184302. doi: 10.1063/1.4935170.

Abstract

Photodissociation dynamics of HOD from the B̃ state has been studied using H/D atom Rydberg "tagging" time-of-flight technique. Both the OD + H and OH + D channels have been investigated. Product kinetic energy distributions, internal state distributions of the OD/OH product, as well as the OD/OH quantum state specific angular anisotropy parameters have been determined. Overall, the photodissociation dynamics of HOD via the B̃ state is qualitatively similar to that of the H2O and D2O, with quantitative differences arising probably from the change in masses. At different photolysis energies, similar rovibrational distributions and state-resolved angular distributions have been observed for the OH/OD(X) product, while remarkable differences have been observed in the rovibrational distributions and state-resolved angular distributions of the OH/OD(A) product.