We present NMR shielding constants obtained through quantum mechanical/molecular mechanical (QM/MM) embedding calculations. Contrary to previous reports, we show that a relatively small QM region is sufficient, provided that a high-quality embedding potential is used. The calculated averaged NMR shielding constants of both acrolein and acetone solvated in water are based on a number of snapshots extracted from classical molecular dynamics simulations. We focus on the carbonyl chromophore in both molecules, which shows large solvation effects, and we study the convergence of shielding constants with respect to total system size and size of the QM region. By using a high-quality embedding potential over standard point charge potentials, we show that the QM region can be made at least 2 Å smaller without any loss of quality, which makes calculations on ensembles tractable by conventional density functional theory calculations.