Key structural and functional differences between early and advanced glycation products

J Mol Endocrinol. 2016 Jan;56(1):23-37. doi: 10.1530/JME-15-0031.

Abstract

Most of the studies on advanced glycation end products (AGE) have been carried out with uncharacterized mixtures of AGE, so the observed effects cannot be linked to defined structures. Therefore, we analysed the structural differences between glycated human serum albumin (gHSA), a low glycated protein, and AGE-human serum albumin (AGE-HSA), a high glycated protein, and we compared their effects on endothelial functionality. Specifically, we characterized glycation and composition on both early and advanced stage glycation products of gHSA and AGE-HSA by using the MALDI-TOF-mass spectrometry assay. Furthermore, we studied the effects of both types of glycation products on reactive oxygen species (ROS) production and in the expression of vascular and intercellular cell adhesion molecules (VCAM-1 and ICAM-1) on human umbilical endothelial cells (HUVEC). We also measured the adhesion of peripheral blood mononuclear cells (PBMC) to HUVEC. Low concentrations of gHSA enhanced long-lasting ROS production in HUVEC, whereas lower concentrations of AGE-HSA caused the anticipation of the induced extracellular ROS production. Both gHSA and AGE-HSA up-regulated the expression of VCAM-1 and ICAM-1 at mRNA levels. Nevertheless, only AGE-HSA increased protein levels and enhanced the adhesion of PBMC to HUVEC monolayers. Functional differences were observed between gHSA and AGE-HSA, causing the latter an anticipation of the pro-oxidant effects in comparison to gHSA. Moreover, although both molecules induced genetic up-regulation of adhesion molecules in HUVEC, only the high glycated protein functionally increased mononuclear cell adhesion to endothelial monolayers. These observations could have important clinical consequences in the development of diabetic vascular complications.

Keywords: advanced glycation end products; glycated human serum albumin; human endothelial cells functionality; peripheral blood mononuclear cells adhesion; vascular adhesion molecules.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Cell Adhesion
  • Cell Adhesion Molecules / genetics
  • Cell Adhesion Molecules / metabolism
  • Cells, Cultured
  • Gene Expression
  • Glycation End Products, Advanced / chemistry
  • Glycation End Products, Advanced / metabolism*
  • Human Umbilical Vein Endothelial Cells / metabolism
  • Humans
  • Molecular Sequence Data
  • Peptide Mapping
  • Reactive Oxygen Species / metabolism
  • Up-Regulation

Substances

  • Cell Adhesion Molecules
  • Glycation End Products, Advanced
  • Reactive Oxygen Species