Aim: miR-548p is a recently identified and poorly characterized miRNA. However, its role of miR-548p in tumorigenesis and progression remains poorly understood. Here, we aimed to investigate the biofunction of miR-548p in hepatocellular carcinogenesis.
Methods: The expression levels of miR-548p were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The role of miR-548p in hepatocellular carcinoma (HCC) was determined by colony formation, flow cytometry assay and nude mice xenograft experiments. miR-548p target genes were analyzed by miRNA target predication programs and verified by qRT-PCR, western blotting assay and dual-luciferase reporter assay.
Results: miR-548p is repressed by hepatitis B virus X protein (HBx) in HCC tumor tissues and hepatoma cells, and inhibited cell growth by inhibiting cell proliferation and promoting cell apoptosis. miR-548p directly downregulated the expression of hepatitis B x-interacting protein (HBXIP) by binding to the 3'-untranslated region of HBXIP mRNA. Further study showed that hepatocyte nuclear factor-4a (HNF4A) promoted the expression of miR-548p and inhibited the transcription of HBXIP. HNF4A is a dominant transcriptional regulator of hepatocyte differentiation and hepatocellular carcinogenesis, and is shown to be repressed by HBx.
Conclusion: We proposed the model for HBx/HNF4A/miR-548p/HBXIP pathway that controls hepatoma cell growth and tumorigenesis of HCC. miR-548p was identified as a tumor-suppressor in HBx-associated hepatocellular carcinogenesis.
Keywords: hepatitis B virus X protein; hepatitis B x-interacting protein; hepatocellular carcinoma; hepatocyte nuclear factor-4a; miR-548p.
© 2015 The Japan Society of Hepatology.