Intermittent hypercapnia-induced phrenic long-term depression is revealed after serotonin receptor blockade with methysergide in anaesthetized rats

Exp Physiol. 2016 Feb;101(2):319-31. doi: 10.1113/EP085161. Epub 2015 Dec 20.

Abstract

What is the central question of this study? Intermittent hypercapnia is a concomitant feature of breathing disorders. Hypercapnic stimuli evoke a form of respiratory plasticity known as phrenic long-term depression in experimental animals. This study was performed to investigate the putative role of serotonin receptors in the initiation of phrenic long-term depression in anaesthetized rats. What is the main finding and its importance? Phrenic nerve long-term depression was revealed in animals pretreated with the serotonin broad-spectrum antagonist, methysergide. This study highlights that serotonin receptors modulate respiratory plasticity evoked by acute intermittent hypercapnia in anaesthetized rats. This study was performed to test the hypothesis that intermittent hypercapnia can evoke a form of respiratory plasticity known as long-term depression of the phrenic nerve (pLTD) and that 5-HT receptors play a role in the initiation of pLTD. Adult male urethane-anaesthetized, vagotomized, paralysed, mechanically ventilated Sprague-Dawley rats were exposed to an acute intermittent hypercapnia protocol. One group received i.v. injection of the non-selective 5-HT receptor antagonist methysergide and another group received i.v. injection of the selective 5-HT1A receptor antagonist WAY-100635 20 min before exposure to intermittent hypercapnia. A control group received i.v. injection of saline. Peak phrenic nerve activity and respiratory rhythm parameters were analysed at baseline (T0), during each of five hypercapnic episodes, and 15, 30 and 60 min (T60) after the last hypercapnia. Intravenous injection of methysergide before exposure to acute intermittent hypercapnia induced development of amplitude pLTD at T60 (decreased by 46.1 ± 6.9%, P = 0.003). Conversely, in control and WAY-100635-pretreated animals, exposure to acute intermittent hypercapnia did not evoke amplitude pLTD. However, a long-term decrease in phrenic nerve frequency was evoked both in control (42 ± 4 breaths min(-1) at T0 versus 32 ± 5 breaths min(-1) at T60; P = 0.036) and in methysergide-pretreated animals (42 ± 2 breaths min(-1) at T0 versus 32 ± 3 breaths min(-1) at T60; P = 0.028). In WAY-100635 pretreated animals, frequency pLTD was prevented. These results suggest that 5-HT receptors modulate respiratory plasticity induced by acute intermittent hypercapnia in anaesthetized rats.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Hypercapnia / physiopathology*
  • Long-Term Potentiation / drug effects*
  • Male
  • Methysergide / pharmacology*
  • Neuronal Plasticity / drug effects
  • Phrenic Nerve / drug effects*
  • Phrenic Nerve / metabolism
  • Piperazines / pharmacology
  • Pyridines / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Serotonin / metabolism*
  • Respiration / drug effects
  • Serotonin Antagonists / pharmacology*

Substances

  • Piperazines
  • Pyridines
  • Receptors, Serotonin
  • Serotonin Antagonists
  • N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide
  • Methysergide