The growth hormone (GH) insulin-like growth factor (IGF) axis has been linked to insulin metabolism and cancer risk. Experimental evidence indicates that the GH-IGF axis itself can be influenced by dietary flavonoids. As fruit and vegetable (FV) intake is a major source of flavonoid consumption, FV's beneficial health effects may be explained via flavonoids' influence on the GH-IGF axis, but observational evidence is currently rare. We used data from Dortmund Nutritional and Anthropometric Longitudinally Designed Study participants to analyse prospective associations between FV, fruit intake and flavonoid intake from FV (FlavFV) with IGF-1 and its binding proteins IGFBP-2 and IGFBP-3. Subjects needed to provide a fasting blood sample in adulthood (18-39 years) and at least two 3-d weighed dietary records in early life (0·5-2 years, n 191), mid-childhood (3-7 years, n 265) or adolescence (girls: 9-15 years, boys: 10-16 years, n 261). Additional analyses were conducted among those providing at least three 24-h urine samples in adolescence (n 236) to address the predictor urinary hippuric acid (HA), a biomarker of polyphenol intake. Higher fruit intake in mid-childhood and adolescence was related to higher IGFBP-2 in adulthood (P=0·03 and P=0·045). Comparable trends (P=0·045-0·09) were discernable for FV intake (but not FlavFV) in all three time windows. Similarly, higher adolescent HA excretion tended to be related (P=0·06) to higher adult IGFBP-2 levels. Regarding IGFBP-3, a marginal (P=0·08) positive association was observed with FlavFV in mid-childhood only. None of the investigated dietary factors was related to IGF-1. In conclusion, higher fruit and FV intakes during growth may be relevant for adult IGFBP-2, but probably not for IGFBP-3 or IGF-1.
Keywords: Children; DONALD Dortmund Nutritional and Anthropometric Longitudinally Designed; FV fruit and vegetable; FlavFV flavonoid intake from FV; Flavonoids; Fruits and vegetables; GH growth hormone; GI glycaemic index; HA hippuric acid; IGF insulin-like growth factor; IGFBP IGF-1 and its binding protein; Insulin-like growth factor; USDA US Department of Agriculture.