Four D-π-A dyes (D=donor, A=accpetor) based on a 3,4-thienothiophene π-bridge were synthesized for use in dye-sensitized solar cells (DSCs). The proaromatic building block 3,4-thienothiophene is incorporated to stabilize dye excited-state oxidation potentials. This lowering of the excited-state energy levels allows for deeper absorption into the NIR region with relatively low molecular weight dyes. The influence of proaromatic functionality is probed through a computational analysis of optimized bond lengths and nucleus independent chemical shifts (NICS) for both the ground- and excited- states. To avoid a necessary lowering of the TiO2 semiconductor conduction band (CB) to promote efficient dye-TiO2 electron injection, strong donor functionalities based on triaryl- and diarylamines are employed in the dye designs to raise both the ground- and excited-state oxidation potentials of the dyes. Solubility, aggregation, and TiO2 surface protection are addressed by examining an ethylhexyl alkyl chain in comparison to a simple ethyl chain on the 3,4-thienothiophene bridge. Power conversion efficiencies of up to 7.8 % are observed.
Keywords: NICS; dye-sensitized solar cells; proaromaticity; solvatochromism; thienothiophene.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.