The rhodium catalyzed asymmetric hydrogenation of enamides to generate amino acid products and derivatives is a widely used method to generate unnatural amino acids. The choice of a chiral ligand is of utmost importance in this reaction and is often based on high throughput screening or simply trial and error. A virtual screening method can greatly increase the speed of the ligand screening process by calculating expected enantiomeric excesses from relative energies of diastereomeric transition states. Utilizing the Q2MM method, new molecular mechanics parameters are derived to model the hydride transfer transition state in the reaction. The new parameters were based off of structures calculated at the B3LYP/LACVP** level of theory and added to the MM3* force field. The new parameters were validated against a test set of experimental data utilizing a wide range of bis-phosphine ligands. The computational model agreed with experimental data well overall, with an unsigned mean error of 0.6 kcal/mol against a set of 18 data points from experiment. The major errors in the computational model were due either to large energetic errors at high e.e., still resulting in qualitative agreement, or cases where large steric interactions prevent the reaction from proceeding as expected.