We directly show how impurity atoms induce the condensation of a representative electronic phase, the charge density wave (CDW) phase, in atomic scale with scanning tunneling microscopy. Oxygen impurity atoms on the self-assembled metallic atomic wire array on a silicon crystal condense the CDW locally above the pristine transition temperature. More interestingly, the CDW along the wires is induced not by a single atomic impurity but by the cooperation of multiple impurities. First-principles calculations disclose the mechanism of the cooperation as the coherent superposition of the local lattice strain induced by impurities, stressing the coupled electronic and lattice degrees of freedom for the CDW. This opens the possibility of the strain engineering over electronic phases of atomic-scale systems.
Keywords: atomic wire; charge density wave; impurity; phase transition; scanning tunneling microscopy.