Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering

ACS Appl Mater Interfaces. 2015 Dec 30;7(51):28273-85. doi: 10.1021/acsami.5b10829. Epub 2015 Dec 18.

Abstract

It remains a challenge to develop electroactive and elastic biomaterials to mimic the elasticity of soft tissue and to regulate the cell behavior during tissue regeneration. We designed and synthesized a series of novel electroactive and biodegradable polyurethane-urea (PUU) copolymers with elastomeric property by combining the properties of polyurethanes and conducting polymers. The electroactive PUU copolymers were synthesized from amine capped aniline trimer (ACAT), dimethylol propionic acid (DMPA), polylactide, and hexamethylene diisocyanate. The electroactivity of the PUU copolymers were studied by UV-vis spectroscopy and cyclic voltammetry. Elasticity and Young's modulus were tailored by the polylactide segment length and ACAT content. Hydrophilicity of the copolymer films was tuned by changing DMPA content and doping of the copolymer. Cytotoxicity of the PUU copolymers was evaluated by mouse C2C12 myoblast cells. The myogenic differentiation of C2C12 myoblasts on copolymer films was also studied by analyzing the morphology of myotubes and relative gene expression during myogenic differentiation. The chemical structure, thermal properties, surface morphology, and processability of the PUU copolymers were characterized by NMR, FT-IR, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and solubility testing, respectively. Those biodegradable electroactive elastic PUU copolymers are promising materials for repair of soft tissues such as skeletal muscle, cardiac muscle, and nerve.

Keywords: aniline oligomer; biomimetic materials; elastomers; electroactivity; polyurethane; soft tissue regeneration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biocompatible Materials / chemical synthesis
  • Biocompatible Materials / chemistry*
  • Elastomers / chemical synthesis
  • Elastomers / chemistry*
  • Hydrophobic and Hydrophilic Interactions
  • Materials Testing
  • Mice
  • Muscle Development
  • Muscle, Skeletal / cytology
  • Muscle, Skeletal / growth & development
  • Myoblasts / cytology*
  • Polyurethanes / chemical synthesis
  • Polyurethanes / chemistry*
  • Spectroscopy, Fourier Transform Infrared
  • Tissue Engineering / instrumentation
  • Tissue Scaffolds / chemistry*

Substances

  • Biocompatible Materials
  • Elastomers
  • Polyurethanes
  • polyetherurethane urea