Importance: Type 1 diabetes mellitus is one of the most common chronic diseases with onset in childhood, but environmental risk factors have not been convincingly established.
Objective: To test whether increased growth during the first year of life is associated with higher risk of childhood-onset type 1 diabetes.
Design, setting, and participants: This is a cohort study using information from 2 population-based cohort studies in Norway and Denmark, the Norwegian Mother and Child Cohort Study (MoBa) and the Danish National Birth Cohort (DNBC), of children born between February 1998 and July 2009. The current study was conducted between November 2014 and June 2015.
Exposures: Change in weight and length from birth to age 12 months.
Main outcomes and measures: Unadjusted and adjusted hazard ratios (HRs) of type 1 diabetes, classified based on nationwide childhood diabetes registers, obtained using Cox proportional hazards regression.
Results: A total of 99,832 children were included in the study, with 59,221 in MoBa (51.2% boys and 48.8% girls; mean age at end of follow-up, 8.6 years [range, 4.6-14.2 years]) and 40,611 in DNBC (50.6% boys and 49.4% girls; mean age at end of follow-up, 13.0 years [range, 10.4-15.7 years]). The incidence rate of type 1 diabetes from age 12 months to the end of follow-up was 25 cases per 100,000 person-years in DNBC and 31 cases per 100,000 person-years in MoBa. The change in weight from birth to 12 months was positively associated with type 1 diabetes (pooled unadjusted HR = 1.24 per 1-SD increase; 95% CI, 1.11-1.39; pooled adjusted HR = 1.24 per 1-SD increase; 95% CI, 1.09-1.41). There was no significant association between length increase from birth to 12 months and type 1 diabetes (pooled unadjusted HR = 1.06 per 1-SD increase; 95% CI, 0.93-1.22; pooled adjusted HR = 1.06 per 1-SD increase; 95% CI, 0.86-1.32). The associations were similar in both sexes.
Conclusions and relevance: This is the first prospective population-based study, to our knowledge, providing evidence that weight increase during the first year of life is positively associated with type 1 diabetes. This supports the early environmental origins of type 1 diabetes.