Integral membrane proteins (IMPs) play an important role in many cellular events and are involved in numerous pathological processes. Therefore, understanding the structure and function of IMPs is a crucial prerequisite to enable successful targeting of these proteins with low molecular weight (LMW) ligands early on in the discovery process. To optimize IMP purification/crystallization and to identify/characterize LMW ligand-target interactions, robust, reliable, high-throughput, and sensitive biophysical methods are needed. Here, we describe a differential scanning fluorimetry (DSF) screening method using the thiol-reactive BODIPY FL-cystine dye to monitor thermal unfolding of the G-protein-coupled receptor (GPCR), CXCR2. To validate this method, the seven-transmembrane protein CXCR2 was analyzed with a set of well-characterized antagonists. This study showed that the new DSF assay assessed reliably the stability of CXCR2 in a 384-well format. The analysis of 14 ligands with a potency range over 4 log units demonstrated the detection/characterization of LMW ligands binding to the membrane protein target. Furthermore, DSF results cross-validated with the label-free differential static light scattering (DSLS) thermal denaturation method. These results underline the potential of the BODIPY assay format as a general tool to investigate membrane proteins and their interaction partners.
Keywords: ligand interaction; membrane protein; thermal shift assay; thiol-reactive dye.
© 2015 Society for Laboratory Automation and Screening.