Transient IR Spectroscopic Observation of Singlet and Triplet States of 2-Nitrofluorene: Revisiting the Photophysics of Nitroaromatics

J Phys Chem A. 2016 Jan 14;120(1):28-35. doi: 10.1021/acs.jpca.5b09125. Epub 2015 Dec 24.

Abstract

The dynamics of 2-nitrofluorene (2-NF) in deuterated acetonitrile is studied using UV pump, IR probe femtosecond transient absorption spectroscopy. Upon excitation to the vibrationally excited S1 state, the excited-state population of 2-NF branches into two different relaxation pathways. One route leads to intersystem crossing (ISC) to the triplet manifold within a few hundred femtoseconds and the other to internal conversion (IC) to the ground state. The experiments indicate that after relaxation to the energetic minimum on S1, 2-NF undergoes internal conversion to the ground state in about 15 ps. IC within the triplet manifold is also observed as the initially populated triplet state relaxes to T1 in about 6 ps. Rotational anisotropy measurements corroborate the assignment of the transient IR frequencies and indicate a rotational diffusion time of 2-NF in the solvent of about 14 ps. The combined set of results provides a unified picture of the dynamics in photoexcited 2-NF. This to our knowledge is the first example using femtosecond vibrational spectroscopy for the study of the fundamental photoinduced processes in nitroaromatic compounds.

Publication types

  • Research Support, Non-U.S. Gov't