Background: Early-life nutrition has a programming effect on later metabolic health; however, the impact of exposure to a high-protein (HP) diet is still being investigated.
Objective: This study evaluated the consequences on pup phenotype of an HP diet during gestation and lactation and after weaning.
Methods: Wistar rat dams were separated into 2 groups fed an HP (55% protein) or normal protein (NP) (control; 20% protein) isocaloric diet during gestation, and each group subsequently was separated into 2 subgroups that were fed an HP or NP diet during lactation. After weaning, male and female pups from each mother subgroup were separated into 2 groups that were fed either an NP or HP diet until they were 6 wk old. Measurements included weight, food intake, body composition, blood glucose, insulin, glucagon, leptin, insulin-like growth factor I, and lipids.
Results: Feeding mothers the HP diet during gestation or lactation induced lower postweaning pup weight (gestation diet × time, P < 0.0001; lactation diet × time, P < 0.0001). Regardless of dams' diets, pups receiving HP compared with NP diet after weaning had 7% lower weight (NP, 135.0 ± 2.6 g; HP, 124.4 ± 2.5 g; P < 0.0001), 16% lower total energy intake (NP, 777 ± 14 kcal; HP, 649 ± 13 kcal; P < 0.0001) and 31% lower adiposity (P < 0.0001). Pups receiving HP compared with NP diet after weaning had increased blood glucose, insulin, and glucagon when food deprived (P < 0.0001 for all). The HP compared with the NP diet during gestation induced higher blood glucose in food-deprived rats (NP, 83.2 ± 2.1 mg/dL; HP, 91.2 ± 2.1 mg/dL; P = 0.046) and increased plasma insulin in fed pups receiving the postweaning NP diet (gestation diet × postweaning diet, P = 0.02).
Conclusion: Increasing the protein concentration of the rat dams' diet during gestation, and to a lesser extent during lactation, and of the pups' diet after weaning influenced pup phenotype, including body weight, fat accumulation, food intake, and glucose tolerance at 6 wk of age.
Keywords: gestation; high-protein diet; lactation; programming; rat model.
© 2016 American Society for Nutrition.