The genetic factors about the pathogenesis of sporadic Parkinson's disease (sPD) is not completely clear at present; therefore, we performed a genome-wide association study, high-throughput sequencing analysis (HTPSA) of all cyclin G-associated kinase (GAK) exons, loss-of-function assessment, and sorting intolerant from tolerant analysis of HTPSA data in 250 typical sPD and 250 controls, which found 55 candidate single nucleotide polymorphisms (SNPs). To further explore these SNPs, we sequenced the 30 most strongly associated SNPs in the 460 typical sPD cases and the 525 controls. All subjects were from the Han population of Chinese mainland and excluded the toxic exposure, the heavy coffee drinking, and the early- and late-onset sPD. The minor allele frequencies (MAFs) at c.3824T>G, c.3794T>C, and c.3819G>A were higher in the control. The TG of c.3824T>G, the TC of c.3794T>C, and the AG of c.3819G>A were associated with the decreased risk of sPD. The subjects carrying the minor C allele of c.3794T>C or the minor A allele of c.3819G>A exhibited a decreased risk of sPD. c.3824T>G negatively affected the binding affinity of heat shock protein 70 (HSP70). c.3794T>C increased the surface area exposed to substrates. c.3819G>A most likely reduced the expression level of GAK. Our data suggest that the multiple SNPs of GAK synergistically participate in the pathogenesis of sPD through multiple pathways.
Keywords: Allele; Chinese Han population; Cyclin G-associated kinase; Genotype; Sporadic Parkinson’s disease.