The present article describes the preparation of β-emitter lutetium-177-labeled zirconia colloid and its preliminary physicochemical and biological evaluation of suitability for local radionuclide therapy. The new (177)Lu-labeled therapeutic radiopharmaceutical candidate was based on the synthesis mode of a previously described zirconia nanoparticle system. The size and shape of the developed radiopharmaceutical compound were observed through a scanning electron microscope and dynamic light scattering methods. The radiocolloid had a 1.7 μm mean diameter and showed high in vitro radiochemical and colloid size stability at room temperature and during the blood sera stability test. After the in vitro characterizations, the product was investigated in the course of the treatment of a spontaneously diseased dog veterinary patient's hock joint completed with single-photon emission computed tomography (SPECT) imaging follow-up measurements and a dual-isotope SPECT imaging tests with conventional (99m)Tc-methanediphosphonic acid bone scintigraphy. In the treated dog, no clinical side-effects or signs of histopathological changes of the joints were recorded during the treatment. SPECT follow-up studies clearly and conspicuously showed the localization of the (177)Lu-labeled colloid in the hock joint as well as detectable but negligible leakages of the radiocolloid in the nearest lymph node. On the basis of biological follow-up tests, the orthopedic team assumed that the (177)Lu-labeled zirconia colloid-based local radionuclide therapy resulted in a significant and long-term improvement in clinical signs of the patient without any remarkable side-effects.
Keywords: 177Lu; local radiotherapy; radionuclide therapy; radiosynovectomy; rheumatoid arthritis; zirconia.