Background: Asthma is a complex disorder influenced by genetics and the environment. Recent findings have linked abnormal DNA methylation in T cells with asthma; however, the potential dysregulation of methylation in airway epithelial cells is unknown. Studies of mouse models of asthma have observed greater levels of 5-hydroxymethylcytosine (5-hmC) and ten-eleven translocation 1 (TET1) expression in lungs. TET proteins are known to catalyze methylation through modification of 5-methylcytosine to 5-hmC.
Objective: We sought to examine the association of TET1 methylation with asthma and traffic-related air pollution (TRAP).
Methods: TET1 methylation levels from DNA derived from nasal airway epithelial cells collected from 12 African American children with physician-diagnosed asthma and their nonasthmatic siblings were measured by using Illumina 450K arrays. Regions of interest were verified by means of locus-specific pyrosequencing in 35 sibling pairs and replicated in an independent population (n = 186). Exposure to TRAP in participants' early life and at current home addresses was estimated by using a land-use regression model. Methylation studies in saliva, PBMCs, and human bronchial epithelial cells were done to support our findings.
Results: Loss of methylation at a single CpG site in the TET1 promoter (cg23602092) and increased global 5-hmC levels were significantly associated with asthma. In contrast, TRAP exposure at participants' current homes significantly increased methylation at the same site. Patterns were consistent across tissue sample types. 5-Aza-2'-deoxycytidine and diesel exhaust particle exposure in human bronchial epithelial cells was associated with altered TET1 methylation and expression and global 5-hmC levels.
Conclusions: Our findings suggest a possible role of TET1 methylation in asthmatic patients and response to TRAP.
Keywords: 5-hmC; DNA methylation; TET1; asthma; cross-tissue marker; nasal epithelial cells; traffic-related air pollution.
Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.