This overview intends to demonstrate the close relationship between the design of smart biomaterials and water-soluble polymer-drug conjugates. First, the discovery and systematic studies of hydrogels based on crosslinked poly(meth)acrylic acid esters and substituted amides is described. Then, the lessons learned for the design of water-soluble polymers as drug carriers are highlighted. The current state-of-the-art in water-soluble, mainly poly[N-(2-hydroxypropyl)methacylamide (HPMA), polymer-drug conjugates is shown including the design of backbone degradable HPMA copolymer carriers. In the second part, the modern design of hybrid hydrogels focuses on the self-assembly of hybrid copolymers composed from the synthetic part (backbone) and biorecognizable grafts (coiled-coil forming peptides or morpholino oligonucleotides) is shown. The research of self-assembling hydrogels inspired the invention and design of drug-free macromolecular therapeutics - a new paradigm in drug delivery where crosslinking of non-internalizating CD20 receptors results in apoptosis in vitro and in vivo. The latter is mediated by biorecognition of complementary motifs; no low molecular weight drug is needed.
Keywords: Cancer; Drug-free macromolecular therapeutics; Hydrogels; Nanomedicines; Polymer-drug conjugates; Self-assembly of macromolecules.