Despite a growing body of knowledge on the mechanisms underlying the onset and progression of cancer, treatment success rates in oncology are at best modest. Current approaches use statistical methods that fail to embrace the inherent and expansive complexity of the tumor/patient/drug interaction. Computational modeling, in particular mechanistic modeling, has the power to resolve this complexity. Using fundamental knowledge on the interactions occurring between the components of a complex biological system, large-scale in silico models with predictive capabilities can be generated. Here, we describe how mechanistic virtual patient models, based on systematic molecular characterization of patients and their diseases, have the potential to shift the theranostic paradigm for oncology, both in the fields of personalized medicine and targeted drug development. In particular, we highlight the mechanistic modeling platform ModCell™ for individualized prediction of patient responses to treatment, emphasizing modeling techniques and avenues of application.
Keywords: cancer; drug development; mechanistic models; ordinary differential equations; virtual clinical trials; virtual patient models.
© 2015 the author(s), publisher and licensee Libertas Academica Ltd.