Hyperbolic metamaterial antenna for second-harmonic generation tomography

Opt Express. 2015 Nov 30;23(24):30730-8. doi: 10.1364/OE.23.030730.

Abstract

The detection and processing of information carried by evanescent field components are key elements for subwavelength optical microscopy as well as single molecule sensing applications. Here, we numerically demonstrate the potential of a hyperbolic medium in the design of an efficient metamaterial antenna enabling detection and tracking of a nonlinear object, with an otherwise hidden second-harmonic signature. The presence of the antenna provides 103-fold intensity enhancement of the second harmonic generation (SHG) from a nanoparticle through a metamaterial-assisted access to evanescent second-harmonic fields. Alternatively, the observation of SHG from the metamaterial itself can be used to detect and track a nanoparticle without a nonlinear response. The antenna allows an optical resolution of several nanometers in tracking the nanoparticle's location via observations of the far-field second-harmonic radiation pattern.