Evolution of circular and linear polarization in scattering environments

Opt Express. 2015 Dec 14;23(25):31874-88. doi: 10.1364/OE.23.031874.

Abstract

This work quantifies the polarization persistence and memory of circularly polarized light in forward-scattering and isotropic (Rayleigh regime) environments; and for the first time, details the evolution of both circularly and linearly polarized states through scattering environments. Circularly polarized light persists through a larger number of scattering events longer than linearly polarized light for all forward-scattering environments; but not for scattering in the Rayleigh regime. Circular polarization's increased persistence occurs for both forward and backscattered light. The simulated environments model polystyrene microspheres in water with particle diameters of 0.1 μm, 2.0 μm, and 3.0 μm. The evolution of the polarization states as they scatter throughout the various environments are illustrated on the Poincaré sphere after one, two, and ten scattering events.