Prevention of Osmotic Injury to Human Umbilical Vein Endothelial Cells for Biopreservation: A First Step Toward Biobanking of Endothelial Cells for Vascular Tissue Engineering

Tissue Eng Part C Methods. 2016 Mar;22(3):270-9. doi: 10.1089/ten.TEC.2015.0364. Epub 2016 Feb 16.

Abstract

High-survival-rate cryopreservation of endothelial cells plays a critical role in vascular tissue engineering, while optimization of osmotic injuries is the first step toward successful cryopreservation. We designed a low-cost, easy-to-use, microfluidics-based microperfusion chamber to investigate the osmotic responses of human umbilical vein endothelial cells (HUVECs) at different temperatures, and then optimized the protocols for using cryoprotective agents (CPAs) to minimize osmotic injuries and improve processes before freezing and after thawing. The fundamental cryobiological parameters were measured using the microperfusion chamber, and then, the optimized protocols using these parameters were confirmed by survival evaluation and cell proliferation experiments. It was revealed for the first time that HUVECs have an unusually small permeability coefficient for Me2SO. Even at the concentrations well established for slow freezing of cells (1.5 M), one-step removal of CPAs for HUVECs might result in inevitable osmotic injuries, indicating that multiple-step removal is essential. Further experiments revealed that multistep removal of 1.5 M Me2SO at 25°C was the best protocol investigated, in good agreement with theory. These results should prove invaluable for optimization of cryopreservation protocols of HUVECs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biological Specimen Banks*
  • Blood Vessels / physiology*
  • Cell Survival / drug effects
  • Cryoprotective Agents / pharmacology
  • Human Umbilical Vein Endothelial Cells / drug effects
  • Human Umbilical Vein Endothelial Cells / pathology*
  • Humans
  • Osmosis* / drug effects
  • Perfusion
  • Permeability
  • Preservation, Biological*
  • Tissue Engineering / methods*

Substances

  • Cryoprotective Agents