Mesenchymal stem cell therapy associated with endurance exercise training: Effects on the structural and functional remodeling of infarcted rat hearts

J Mol Cell Cardiol. 2016 Jan:90:111-9. doi: 10.1016/j.yjmcc.2015.12.012. Epub 2015 Dec 15.

Abstract

We tested the effects of early mesenchymal stem cell (MSC) therapy associated with endurance exercise on the structural and functional cardiac remodeling of rats with myocardial infarctation (MI). Male Wistar rats (40 days old) were divided into 6 groups: control and exercise sham; control and exercise MI; and control and exercise MI MSC. MI was surgically induced and bone marrow-derived MSCs were immediately injected via caudal vein (concentration: 1 × 10(6 )cells). Twenty-four hours later ET groups exercised on a treadmill (5 days/week; 60 min/day; 60% of maximal running velocity) for 12 weeks. Structural and functional changes were determined by echocardiography. Contractility and intracellular global calcium ([Ca(2 +)]i) transient were measured in myocytes from the left ventricular (LV) non-infarcted area. Calcium regulatory proteins were measured by Western blot. MI increased (p < 0.05) heart, ventricular and LV weights and its ratios to body weight; LV internal dimension in diastole (LVID-D) and in systole (LVID-S) and LV free wall in diastole (LVFW-D), but reduced the thickness of interventricular septum in systole (IVS-S), ejection fraction (EF) and fractional shortening (FS). MI augmented (p < 0.05) the times to peak and to half relaxation of cell shortening as well as the amplitude of the [Ca(2 +)]i transient and the times to peak and to half decay. Early MSCs therapy restored LVFW-D, IVS-S and the amplitude and time to half decay of the [Ca(2 +)]i transient. Early endurance exercise intervention increased (p < 0.05) LVFW-S, IVS-S, EF and FS, and reduced the times to peak and to half relaxation of cell shortening, and the amplitude of the [Ca(2 +)]i transient. Exercise training also increased the expression of left ventricular SERCA2a and PLBser16. Nevertheless, the combination of these therapies did not cause additive effects. In conclusion, combining early MSCs therapy and endurance exercise does not potentiate the benefits of such treatments to structural and functional cardiac remodeling in infarcted rats.

Keywords: Cardiomyocytes; Endurance training; Myocardial infarction; Stem cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism
  • Calcium-Binding Proteins / genetics
  • Calcium-Binding Proteins / metabolism
  • Diastole
  • Echocardiography
  • Gene Expression
  • Male
  • Mesenchymal Stem Cell Transplantation*
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / metabolism
  • Myocardial Contraction / physiology
  • Myocardial Infarction / genetics
  • Myocardial Infarction / metabolism
  • Myocardial Infarction / pathology
  • Myocardial Infarction / therapy*
  • Myocardium / metabolism
  • Myocardium / pathology
  • Myocytes, Cardiac / metabolism
  • Myocytes, Cardiac / pathology
  • Physical Conditioning, Animal*
  • Physical Endurance
  • Rats
  • Rats, Wistar
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / genetics
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / metabolism
  • Systole
  • Ventricular Remodeling

Substances

  • Calcium-Binding Proteins
  • phospholamban
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases
  • Calcium