Magnetically triggered nanovehicles for controlled drug release as a colorectal cancer therapy

Colloids Surf B Biointerfaces. 2016 Apr 1:140:567-573. doi: 10.1016/j.colsurfb.2015.11.008. Epub 2015 Nov 18.

Abstract

Magnetic silica core/shell nanovehicles presenting atherosclerotic plaque-specific peptide-1 (AP-1) as a targeting ligand (MPVA-AP1 nanovehicles) have been prepared through a double-emulsion method and surface modification. Amphiphilic poly(vinyl alcohol) was introduced as a polymer binder to encapsulate various drug molecules (hydrophobic, hydrophilic, polymeric) and magnetic iron oxide (Fe3O4) nanoparticles. Under a high-frequency magnetic field, magnetic carriers (diameter: ca. 50 nm) incorporating the anti-cancer drug doxorubicin collapsed, releasing approximately 80% of the drug payload, due to the heat generated by the rapidly rotating Fe3O4 nanoparticles, thereby realizing rapid and accurate controlled drug release. Simultaneously, the magnetic Fe3O4 themselves could also kill the tumor cells through a hyperthermia effect (inductive heating). Unlike their ungrafted congeners (MPVA nanovehicles), the AP1-grafted nanovehicles bound efficiently to colorectal cancer cells (CT26-IL4Rα), thereby displaying tumor-cell selectivity. The combination of remote control, targeted dosing, drug-loading flexibility, and thermotherapy and chemotherapy suggests that magnetic nanovehicles such as MPVA-AP1 have great potential for application in cancer therapy.

Keywords: Drug controlled release; Magnetic nanovehicles; Stimuli-triggered release; Surface modification; Targeting therapy.

MeSH terms

  • Animals
  • Antibiotics, Antineoplastic / chemistry
  • Antibiotics, Antineoplastic / pharmacokinetics
  • Antibiotics, Antineoplastic / pharmacology
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacokinetics
  • Antineoplastic Agents / pharmacology*
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Colorectal Neoplasms / drug therapy*
  • Colorectal Neoplasms / pathology
  • Delayed-Action Preparations / chemistry
  • Delayed-Action Preparations / pharmacokinetics
  • Delayed-Action Preparations / pharmacology*
  • Doxorubicin / chemistry
  • Doxorubicin / pharmacokinetics
  • Doxorubicin / pharmacology*
  • Drug Carriers / chemistry
  • Drug Liberation
  • Ferric Compounds / chemistry
  • Magnetic Fields
  • Mice
  • Microscopy, Electron, Transmission
  • Microscopy, Fluorescence
  • Nanoparticles / chemistry
  • Nanoparticles / ultrastructure
  • Surface Properties
  • Tumor Burden / drug effects

Substances

  • Antibiotics, Antineoplastic
  • Antineoplastic Agents
  • Delayed-Action Preparations
  • Drug Carriers
  • Ferric Compounds
  • ferric oxide
  • Doxorubicin