Background: We attempted to elucidate the mechanism of cell death after radiation by studying how β-catenin silencing controls the radiation sensitivity of radioresistant head and neck cancer cells.
Methods: The most radioresistant cancer cell line (AMC-HN-9) was selected for study. Targeted silencing of β-catenin was used on siRNAs. Sensitivity to radiation was examined using clonogenic and methylthiazol tetrazolium (MTT) assays.
Results: A combination of irradiation plus β-catenin silencing led to a significant reduction in the inherent radioresistance of AMC-HN-9 cells. Although expression of Ku70/80 was upregulated in AMC-HN-9 cells after irradiation, Ku70/80 was dramatically decreased in a combination of irradiation and β-catenin silencing. Interestingly, irradiation-induced Ku70/80 was completely prevented by β-catenin silencing-induced LKB1/AMP-activated protein kinase (LKB1/AMPK) signal.
Conclusion: The LKB1/AMPK pathway might relay the signal between the Wnt/β-catenin pathway and the Ku70/Ku80 DNA repair machinery, and play a decisive role in fine-tuning the responses of cancer cells to irradiation. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1909-E1917, 2016.
Keywords: Ku70/Ku80; LKB1/AMP-activated protein kinase (LKB1/AMPK); head and neck cancer cells; radiation sensitivity; β-catenin.
© 2015 Wiley Periodicals, Inc.