Objectives: Our main objective was to investigate the mechanisms underlying the effects of hyperhomocysteinaemia (HHcy) on contractile response mediated by α1-adrenoceptors in the rat corpus cavernosum.
Methods: Concentration-response curves for phenylephrine (PE) were obtained in strips of corpus cavernosum, in absence or after incubation with tiron, tempol or polyethylene glycol (PEG)-catalase combined or not with tempol. We also measured the superoxide anion (O2(-)) and hydrogen peroxide (H2O2) generation, superoxide dismutase (SOD) and catalase activity and α-actin expression in rat corpus cavernosum from both groups.
Key findings: HHcy increased PE-induced contraction in cavernosal strips. Tiron, PEG-catalase or tempol increased PE-induced contraction in strips from control rats, but it was not altered by tiron or PEG-catalase in HHcy rats, whereas tempol reduced this response. The combination of PEG-catalase and tempol did not alter the contractile response to PE in both groups. HHcy increased O2(-) generation and SOD activity, whereas H2O2 concentration was reduced. Finally, HHcy did not alter catalase activity or expression of α-actin.
Conclusions: The major new finding from this study is that HHcy induced a marked increase in PE-induced contraction in rat corpus cavernosum by a mechanism that involves increased O2(-) generation and it could play a role in the pathogenesis of erectile dysfunction associated with HHcy.
Keywords: corpus cavernosum; hyperhomocysteinaemia; α1-adrenergic agonist and reactive oxygen species.
© 2015 Royal Pharmaceutical Society.