Trichophyton infection is highly prevalent and tends to be recurrent. Therefore, it is important to develop new therapeutic agents. Previously, we established a mouse model of Trichophyton-induced contact hypersensitivity (CHS) and demonstrated that dectin-1 was involved in inflammation induced by trichophytin, the Trichophyton antigen. Here, we used that model to investigate glycyrrhetinic acid (GA) from plants of the genus Glycyrrhiza as a potential anti-inflammatory agent against superficial mycoses. GA suppressed swelling and the expression of inflammatory cytokines, including macrophage inflammatory protein (MIP)-2, interleukin (IL)-6, tumor necrosis factor (TNF)-α and interferon (IFN)-γ mRNA. Anti-MIP-2 antibody suppressed trichophytin-induced inflammation, and antidectin-1 antibody suppressed zymosan-induced MIP-2 production in keratinocyte cells. These results suggest that MIP-2 is produced by dectin-1 activation and is involved in inflammation associated with CHS to trichophytin. GA also suppressed zymosan-induced MIP-2 and interleukin (IL)-8, production in mouse and human macrophages and keratinocytes. Furthermore, GA suppressed the phosphorylation of spleen tyrosine kinase (Syk) and inhibitor of nuclear factor-kappa B (IκBα) and the degradation of IκBα in zymosan-simulated RAW264.7 cells. The results of this study suggest that GA suppresses inflammation induced by trichophytin, partly by the downregulation of Syk phosphorylation.
Keywords: Syk; dectin-1; glycyrrhetinic acid; trichophytin-induced inflammation model.
© 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.