OBJECTIVE The treatment of paraclinoid aneurysms remains challenging. It is important to determine the exact location of the paraclinoid aneurysm when considering treatment options. The authors herein evaluated the effectiveness of using the optic strut (OS) and tuberculum sellae (TS) as radiographic landmarks for distinguishing between intradural and extradural paraclinoid aneurysms on source images from CT angiography (CTA). METHODS Between January 2010 and September 2013, a total of 49 surgical patients with the preoperative diagnoses of paraclinoid aneurysm and 1 symptomatic cavernous-clinoid aneurysm were retrospectively identified. With the source images from CTA, the OS and the TS were used as landmarks to predict the location of the paraclinoid aneurysm and its relation to the distal dural ring (DDR). The operative findings were examined to confirm the definitive location of the paraclinoid aneurysm. Statistical analysis was performed to determine the diagnostic effectiveness of the landmarks. RESULTS Nineteen patients without preoperative CTA were excluded. The remaining 30 patients comprised the current study. The intraoperative findings confirmed 12 intradural, 12 transitional, and 6 extradural paraclinoid aneurysms, the diagnoses of which were significantly related to the type of aneurysm (p < 0.05) but not factors like sex, age, laterality of aneurysm, or relation of the aneurysm to the ophthalmic artery on digital subtraction angiography. To measure agreement with the correct diagnosis, the OS as a reference point was far superior to the TS (Cohen's kappa coefficients 0.462 and 0.138 for the OS and the TS, respectively). For paraclinoid aneurysms of the medial or posterior type, using the base of the OS as a reference point tended to overestimate intradural paraclinoid aneurysms. The receiver operating characteristic curve indicated that if the aneurysmal neck traverses the axial plane 2 mm above the base of the OS, the aneurysm is most likely to grow across the DDR and present as a transitional aneurysm (sensitivity 0.806; specificity 0.792). CONCLUSIONS High-resolution thin-cut CTA is a fast and crucial tool for diagnosing paraclinoid aneurysms. The OS serves as an effective landmark in CTA source images for distinguishing between intradural and extradural paraclinoid aneurysms. The DDR is supposed to be located 2 mm above the base of the OS in axial planes.
Keywords: ACP = anterior clinoid process; C4 = cavernous segment; C5 = clinoid segment; C6 = ophthalmic segment; CTA = CT angiography; DDR = distal dural ring; DSA = digital subtraction angiography; ICA = internal carotid artery; OS = optic strut; OphA = ophthalmic artery; PDR = proximal dural ring; ROC = receiver operating characteristic; TS = tuberculum sellae; computed tomographic angiography; distal dural ring; optic strut; paraclinoid aneurysm; proximal dural ring; tuberculum sellae; vascular disorders.