Vehicle emission implications of drivers' smart advisory system for traffic operations in work zones

J Air Waste Manag Assoc. 2016 May;66(5):446-55. doi: 10.1080/10962247.2016.1140095.

Abstract

Wireless communication systems have been broadly applied in various complicated traffic operations to improve mobility and safety on roads, which may raise a concern about the implication of the new technology on vehicle emissions. This paper explores how the wireless communication systems improve drivers' driving behaviors and its contributions to the emission reduction, in terms of Operating Mode (OpMode) IDs distribution used in emission estimation. A simulated work zone with completed traffic operation was selected as a test bed. Sixty subjects were recruited for the tests, whose demographic distribution was based on the Census data in Houston, Texas. A scene of a pedestrian's crossing in the work zone was designed for the driving test. Meanwhile, a wireless communication system called Drivers Smart Advisory System (DSAS) was proposed and introduced in the driving simulation, which provided drivers with warning messages in the work zone. Two scenarios were designed for a leading vehicle as well as for a following vehicle driving through the work zone, which included a base test without any wireless communication systems, and a driving test with the trigger of the DSAS. Subjects' driving behaviors in the simulation were recorded to evaluate safety and estimate the vehicle emission using the Environmental Protection Agency (EPA) released emission model MOVES. The correlation between drivers' driving behavior and the distribution of the OpMode ID during each scenario was investigated. Results show that the DSAS was able to induce drivers to accelerate smoothly, keep longer headway distance and stop earlier for a hazardous situation in the work zone, which driving behaviors result in statistically significant reduction in vehicle emissions for almost all studied air pollutants (p-values range from 4.10E-51 to 2.18E-03). The emission reduction was achieved by the switching the distribution of the OpMode IDs from higher emission zones to lower emission zones.

Implications: Transportation section is a significant source of greenhouse gas emissions. Many studies demonstrate that the wireless communication system dedicated for safety and mobility issues may contribute to the induction in vehicle emissions through changing driving behaviors. An insight into the correlation between the driving behaviors and the distribution of Operating Mode (OpMode) IDs is essential to enhance the emission reduction. The result of this study shows that with a Drivers Smart Advisory System (DSAS) drivers accelerated smoothly and stopped earlier for a hazardous situation, which induce the switch of the OpMode IDs from high emission zones to lower emission zones.

MeSH terms

  • Air Pollutants / analysis*
  • Automobile Driving*
  • Environmental Monitoring
  • Models, Theoretical
  • Remote Sensing Technology / statistics & numerical data*
  • Safety Management / methods*
  • Texas
  • Vehicle Emissions / analysis*

Substances

  • Air Pollutants
  • Vehicle Emissions