Academic collaboration is critical to knowledge production, especially as teams dominate scientific endeavors. Typical predictors of collaboration include individual characteristics such as academic rank or institution, and network characteristics such as a central position in a publication network. The role of disciplinary affiliation in the initiation of an academic collaboration between two investigators deserves more attention. Here, we examine the influence of disciplinary patterns on collaboration formation with control of known predictors using an inferential network model. The study group included all researchers in the Institute of Clinical and Translational Sciences (ICTS) at Washington University in St. Louis. Longitudinal data were collected on co-authorships in grants and publications before and after ICTS establishment. Exponential-family random graph models were used to build the network models. The results show that disciplinary affiliation independently predicted collaboration in grant and publication networks, particularly in the later years. Overall collaboration increased in the post-ICTS networks, with cross-discipline ties occurring more often than within-discipline ties in grants, but not publications. This research may inform better evaluation models of university-based collaboration, and offer a roadmap to improve cross-disciplinary collaboration with discipline-informed network interventions.