Changes in litterfall dynamics and soil properties due to anthropogenic or natural perturbations have important implications to soil carbon (C) and nutrient cycling via microbial pathway. Here we determine soil microbial responses to contrasting types of litter inputs (leaf vs. fine woody litter) and nitrogen (N) deposition by conducting a multi-year litter manipulation and N addition experiment in a mixed-wood forest. We found significantly higher soil organic C, total N, microbial biomass C (MBC) and N (MBN), microbial activity (MR), and activities of four soil extracellular enzymes, including β-glucosidase (BG), N-acetyl-β-glucosaminidase (NAG), phenol oxidase (PO), and peroxidase (PER), as well as greater total bacteria biomass and relative abundance of gram-negative bacteria (G-) community, in top soils of plots with presence of leaf litter than of those without litter or with presence of only fine woody litter. No apparent additive or interactive effects of N addition were observed in this study. The occurrence of more labile leaf litter stimulated G-, which may facilitate microbial community growth and soil C stabilization as inferred by findings in literature. A continued treatment with contrasting types of litter inputs is likely to result in divergence in soil microbial community structure and function.