We show that accounting for internal character among interacting heterogeneous entities generates rich transition behavior between isolation and cohesive dynamical grouping. Our analytical and numerical calculations reveal different critical points arising for different character-dependent grouping mechanisms. These critical points move in opposite directions as the population's diversity decreases. Our analytical theory may help explain why a particular class of universality is so common in the real world, despite the fundamental differences in the underlying entities. It also correctly predicts the nonmonotonic temporal variation in connectivity observed recently in one such system.