Cervical magnetic stimulation: a new painless method for bilateral phrenic nerve stimulation in conscious humans

J Appl Physiol (1985). 1989 Oct;67(4):1311-8. doi: 10.1152/jappl.1989.67.4.1311.

Abstract

Assessing diaphragmatic contractility is a common goal in various situations. This assessment is mainly based on static or dynamic maximal voluntary maneuvers and twitch transdiaphragmatic pressures (Pdi) obtained by stimulation of the phrenic nerves (PS). PS eliminates the central components of diaphragmatic activation, but the available techniques of PS remain subject to some limitations. Transcutaneous PS is painful, and needle PS is potentially dangerous. Time-varying magnetic fields can stimulate nervous structures without pain and without adverse effects. In six subjects, we have studied cervical magnetic stimulation (CMS) as a method of PS. We have compared the stimulated Pdi (Pdistim) with the maximal Pdi obtained during static combined expulsive-Mueller maneuver (Pdimax) and with the Pdi generated during a sniff test (Pdisniff). CMS produced twitch Pdi averaging 33.4 +/- 9.7 cmH2O. Pdistim/Pdimax and Pdistim/Pdisniff were 24 +/- 6 and 41 +/- 14%, respectively. These values are comparable to those obtained in other studies with transcutaneous PS. They were highly reproducible in all the subjects. Electromyographic data provided evidence of bilateral maximal stimulation. CMS is a nonspecific method and may stimulate various nervous structures. However, diaphragmatic contraction was elicited by stimulation of the phrenic trunk, since the phrenicodiaphragmatic latencies (less than 7 ms) were in the range of values reported with direct stimulation of the trunk. Cocontraction of neck muscles, including the sternomastoid, was present, but its influence in the CMS-induced Pdi seems minimal. We conclude that magnetic stimulation is an easy, well-tolerated, reproducible safe, and valuable method to assess phrenic conduction and diaphragmatic twitch response.

Publication types

  • Review

MeSH terms

  • Action Potentials / physiology
  • Adult
  • Diaphragm / innervation
  • Diaphragm / physiology*
  • Electromyography
  • Female
  • Humans
  • Magnetics*
  • Male
  • Muscle Contraction / physiology
  • Phrenic Nerve / physiology*