A deep phenotypic characterization of heart failure (HF) is important for a better understanding of its pathophysiology. In particular, novel noninvasive techniques for the characterization of functional abnormalities in HF with preserved ejection fraction are currently needed. While echocardiography is widely used to assess ventricular function, standard echocardiographic techniques provide a limited understanding of ventricular filling. The application of fluid dynamics theory, along with assessments of flow velocity fields in multiple dimensions in the ventricle, can be used to assess intraventricular pressure gradients (IVPGs), which in turn may provide valuable insights into ventricular diastolic and systolic function. Advances in imaging techniques now allow for accurate estimations of systolic and diastolic IVPGs, using noninvasive methods that are easily applicable in clinical research. In this review, we describe the basic concepts regarding intraventricular flow measurements and the derivation of IVPGs. We also review existing literature exploring the role of IVPGs in HF.
Keywords: Color M-mode; Diastolic function; Heart failure; Heart failure and preserved ejection fraction; Intraventricular pressure gradients; Magnetic resonance imaging.