Epidemiological studies have identified hyperuricemia as an independent risk factor for cardiovascular disease. However, the mechanism whereby hyperuricemia causes atherosclerosis remains unclear. The objective of the study was to establish a new rat model of hyperuricemia-induced atherosclerosis. Wistar-Kyoto rats were randomly allocated to either a normal diet (ND), high-fat diet (HFD), or high-adenine diet (HAD), followed by sacrifice 4, 8, or 12 weeks later. Serum uric acid and lipid levels were analyzed, pathologic changes in the aorta were observed by hematoxylin and eosin staining, and mRNA expression was evaluated by quantitative real-time polymerase chain reaction. Serum uric acid and TC were significantly increased in the HAD group at 4 weeks compared with the ND group, but there was no significant difference in serum uric acid between the ND and HFD groups. Aorta calcification occurred earlier and was more severe in the HAD group, compared with the HFD group. Proliferating cell nuclear antigen, monocyte chemotactic factor-1, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 mRNA levels were increased in the HFD and HAD groups compared with the ND group. This new animal model will be a useful tool for investigating the mechanisms responsible for hyperuricemia-induced atherosclerosis.