Bufalin (BF) exhibited antiproliferation and antimigration effects on human A549 lung cancer cells. To search its target-related proteins, protein expression profiles of BF-treated and control cells were compared using two quantitative proteomic methods, iTRAQ-based and label-free proteomic analysis. A total of 5428 proteins were identified in iTRAQ-based analysis while 6632 proteins were identified in label-free analysis. The number of common identified proteins of both methods was 4799 proteins. By application of 1.20-fold for upregulated and 0.83-fold for downregulated cutoff values, 273 and 802 differentially expressed proteins were found in iTRAQ-based and label-free analysis, respectively. The number of common differentially expressed proteins of both methods was 45 proteins. Results of bioinformational analysis using Metacore(TM) showed that the two proteomic methods were complementary and both suggested the involvement of oxidative stress and regulation of gene expression in the effects of BF, and fibronectin-related pathway was suggested to be an important pathway affected by BF. Western blotting assay results confirmed BF-induced change in levels of fibronectin and other related proteins. Overexpression of fibronectin by plasmid transfection ameliorated antimigration effects of BF. Results of the present study provided information about possible target-related proteins and signal network of BF.
Keywords: A549 cells; Bufalin; Cell biology; Label-free; iTRAQ-based.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.